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Abstract

We study the effects of India’s road network expansion on capital allocation across firms
and aggregate productivity. Focusing on road improvements between 2011 and 2019—largely
driven by the National Highways Development Project—we construct a market access mea-
sure using historical OpenStreetMap data that captures changes in travel times between postal
codes and major cities. Using a staggered difference-in-differences design, we find that im-
proved market access is associated with reductions in capital misallocation and increases in ag-
gregate productivity in treated postal codes, primarily through better capital allocation rather
than within-firm efficiency gains. Firms experience a 25% increase in capital, with ex ante
high marginal revenue product of capital (MRPK) firms seeing an additional 25% growth and
a 45% decline in MRPK, consistent with reduced capital misallocation. We estimate that the
Solow residual rises by 2.7-5%, a gain comparable to the lower-bound effects of India’s earlier
foreign capital liberalization. We show that these allocative gains are driven primarily by re-
ductions in input wedges rather than by changes in markups, indicating that road infrastructure
improves efficiency mainly by alleviating physical constraints on input access.
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1 Introduction

Frictions in input and product markets distort the allocation of productive inputs across firms and
reduce aggregate productivity. In the absence of such frictions, marginal revenue products of cap-
ital (MRPK) are equalized across firms within an industry. A large literature, however, documents
substantial dispersion in MRPK across firms in developing economies, pointing to capital misallo-
cation. In a seminal contribution, Hsieh and Klenow (2009b) show that bringing India’s manufac-
turing sector to the allocative efficiency of the United States would raise total factor productivity
(TFP) by 40–60%, highlighting the potentially large aggregate gains from improved allocative
efficiency.

Much of the subsequent literature has emphasized financial frictions as a key source of capital
misallocation and has studied policies that improve firms’ access to capital markets (e.g., Bau and
Matray, 2023). However, frictions outside the financial sector may also play an important role.

In this paper we focus on frictions related to transportation infrastructure and study how ma-
jor highway expansions in India shape the allocation of resources across firms. Poor connectivity
raises transport costs, disrupts supply chains, and limits access to input and output markets, increas-
ing investment risk even for firms with access to finance. By improving connectivity, transportation
infrastructure can relax effective capital constraints, allowing firms with high returns to capital to
expand investment.

Focusing on the capital-deepening margin, we examine whether improved road infrastructure
reallocates capital toward ex ante high-MRPK firms and whether these changes are associated with
a reduction in capital misallocation and gains in aggregate productivity.

We study this mechanism in the context of India’s National Highways Development Project
(NHDP), one of the largest road infrastructure programs worldwide. By the early 2000s, poor
connectivity was widely recognized as a major constraint on economic growth, even after India’s
trade liberalization of the 1990s. In response, the Indian government launched the NHDP, leading
to a large expansion in highway density between 2011 and 2019. This expansion occurred in two
main phases: an initial phase between 2011 and 2013 associated with the completion and opening
of the Golden Quadrilateral Highway (GQH), followed by subsequent NHDP phases between 2013
and 2019 that further improved road connectivity across the country.

To quantify changes in connectivity, we construct a time-varying market access index using
historical road network data from OpenStreetMap for the period 2011–2019, following Donaldson
and Hornbeck (2016) and Baum-Snow et al. (2020). The index measures shortest travel times
between postal codes and major Indian cities, accounting for the full road network, including
national highways, urban and rural roads, and lower-quality routes. Unlike binary indicators or
distance-to-highway measures, this approach provides a continuous, location-specific measure of

1



market access that varies across space and time and captures changes in effective connectivity more
precisely.

We estimate the firm-level effects of road network expansion using a rich panel dataset on the
financial performance of Indian firms and two complementary difference-in-differences designs.
The first exploits changes in market access associated with the completion of the GQH between
2011 and 2013. The second is a staggered design that exploits heterogeneous growth in market
access over the full 2011–2019 period, capturing both the initial highway completion and the
gradual, uneven improvements of market access under subsequent NHDP investments across space
and time.

To address potential identification concerns, we restrict the sample to firms incorporated prior
to the announcement of the GQH, mitigating bias from endogenous entry decisions. This restric-
tion focuses the analysis on incumbent firms and likely yields conservative estimates of aggregate
gains from improved market access. Firm fixed effects (FE) control for time-invariant unobserved
heterogeneity, while industry-year FE absorb common sectoral shocks. We further account for
pre-existing regional differences and firm heterogeneity by interacting initial firm characteristics
and initial local economic conditions with year FE and by including subdistrict-year FE. We addi-
tionally verify balance in pre-treatment firm outcomes across treated and control locations. Finally,
a series of diagnostic analyses—including event study plots, a Bacon decomposition, an analysis
of the weighting structure, and a stacked regression approach—indicate that biases arising from
treatment effect heterogeneity, negative weighting, or differential trends are negligible, supporting
the robustness of our empirical strategy.

Our results show substantial capital reallocation following improvements in connectivity. Rel-
ative to firms in untreated locations, treated firms increase capital investment, with the largest
responses among firms that are ex ante high-MRPK. In the staggered design over the 2011–2019
period, firms located in treated postal codes increase capital by approximately 25%, while ex ante
high-MRPK firms experience an additional 25% increase. As capital shifts disproportionately to-
ward these firms, their MRPK declines by roughly 45%, a pattern consistent with a reduction in
capital misallocation.

We then quantify the aggregate productivity implications of reduced input misallocation. We
measure aggregate productivity using changes in the Solow residual, which reflect both firm-level
efficiency (TFPQ) and the allocation of inputs across firms. We find little evidence of improve-
ments in TFPQ, indicating that aggregate gains primarily arise from improved allocation rather
than within-firm efficiency. Using the estimated responses of capital and labor, we obtain aggre-
gate productivity gains ranging from 2.7% to 5% among treated firms. These effects are com-
parable in magnitude to the lower-bound estimates of aggregate productivity gains from foreign
capital liberalization in India reported by Bau and Matray (2023), despite important differences in
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mechanisms, sources of variation—industry-level exposure in their setting versus spatial variation
in ours—and timing—the 2001 and 2006 liberalization episodes in their case versus the post-2011
period in ours. This comparison highlights transportation infrastructure as a complementary chan-
nel for improving aggregate efficiency by alleviating physical, rather than financial, constraints on
production.

Finally, we examine whether the observed allocative gains arise primarily from changes in
markups or from changes in pure input wedges, which is important for identifying the channel
through which improvements in market access operate. Market access can affect firms either by
intensifying competition in final-goods markets, thereby influencing markups, or by improving
access to intermediate inputs, lowering effective input costs. We find that the reduction in mis-
allocation is driven mainly by changes in input wedges rather than by changes in markups. In
particular, the implied change in markups is modest—about −2.7% on average—whereas pure in-
put wedges adjust substantially: the pure capital wedge falls by about 32%, while the pure labor
wedge rises by about 29%, consistent with capital deepening as access to capital and intermediates
improves. Taken together, these patterns indicate that improved road connectivity raises allocative
efficiency mainly by alleviating physical constraints on input access, rather than through changes
in product-market power alone.

A large literature on misallocation has emphasized financial frictions and trade barriers as
primary sources of inefficiencies (Banerjee and Moll, 2010; Midrigan and Xu, 2014; Hsieh and
Klenow, 2009b; Restuccia and Rogerson, 2008; Epifani and Gancia, 2011; Melitz, 2003; Alcalá
and Ciccone, 2004).1 More recently, Bau and Matray (2023) show that greater access to foreign
capital improves capital allocation in Indian firms, suggesting that reducing financial constraints
can alleviate misallocation. We contribute to this literature by showing that infrastructure invest-
ments can also facilitate capital reallocation, through a different mechanism that operates by relax-
ing physical constraints on input access.

We also provide new firm-level evidence on the effects of transportation infrastructure. A
large literature documents the macroeconomic and spatial effects of transportation infrastructure,
emphasizing its role in economic growth, trade, employment, urbanization, and regional develop-
ment.2 Firm-level studies show that infrastructure enhances firm productivity (Datta, 2012; Ghani

1These studies emphasize that credit constraints significantly distort capital allocation and that firms with better
access to financing can accumulate capital more efficiently (Bai et al., 2018). While trade liberalization has been shown
to improve resource reallocation and aggregate productivity (Melitz, 2003; Alcalá and Ciccone, 2004), its effects
on misallocation are more ambiguous, with some studies finding that market power and markups may counteract
efficiency gains (Epifani and Gancia, 2011).

2Studies show that improved transportation networks enhance business performance, labor market integration,
and trade (Michaels, 2008; Duranton et al., 2014; Datta, 2012). Infrastructure investments shape spatial economic
dynamics, affecting urban expansion, decentralization, and land values (Baum-Snow, 2007; Baum-Snow et al., 2016;
Atack et al., 2010; Haines and Margo, 2006; Atack and Margo, 2011; Atack et al., 2008). In developing economies,
infrastructure fosters regional economic convergence, as seen in the case of railroads reducing inter-regional disparities
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et al., 2016; Asturias et al., 2019), facilitates firm entry and competition (Duranton and Turner,
2012; Asturias et al., 2019), and supports firm expansion and industrial growth (Lu, 2018). To our
knowledge, however, no study has examined how transportation infrastructure affects the alloca-
tion of capital across firms.

We also contribute to the literature on India’s road infrastructure by documenting how the ef-
fects of different phases of the NHDP unfolded over time. Existing work has focused primarily on
the GQH, showing that it improved inventory management and reduced transportation frictions for
manufacturing firms (Datta, 2012), increased manufacturing activity and firm productivity (Ghani
et al., 2016), and intensified product-market competition (Asturias et al., 2019). In the labor mar-
ket, road expansions have been shown to contribute to occupational shifts from agriculture to wage
employment (Asher and Novosad, 2020).

Finally, we advance empirical measurement by moving beyond the binary indicators (Chandra
and Thompson, 2000; Michaels, 2008; Atack et al., 2010; Faber, 2014; Datta, 2012; Ghani et
al., 2016) or proximity-based measures (Datta, 2012; Banerjee et al., 2020; Brooks et al., 2021)
commonly used in the literature, and instead propose a time-varying, location-specific measure of
market access based on travel times.

The remainder of this paper is structured as follows. Section 2 describes the data and key vari-
able measurements. Section 3 relates input price wedges and misallocation. Section 4 presents our
empirical approach and Section 5 discusses results. Section 6 quantifies the aggregate productivity
effects of reduced misallocation within treated firms and Section 7 assesses the role of shifts in
markups and pure input wedges. The last section concludes.

2 Measurements and Data

2.1 Road Network Expansion

By the early 2000s, inadequate road infrastructure was widely recognized as a constraint on India’s
economic development. National highways represent only a small share of the road network but
carry a disproportionate share of freight and passenger traffic; limited lane capacity and poor road
quality contributed to congestion, high accident rates, and long travel times. In response, the Gov-

(Donaldson, 2018). However, some studies suggest that infrastructure does not always create new economic activity
but may instead reallocate existing activity, particularly when investments favor already developed regions (Chandra
and Thompson, 2000; Faber, 2014; Baum-Snow et al., 2020). Highways and intercity networks have been linked to
employment growth, labor mobility, and regional expansion, though they may also contribute to economic concen-
tration in developed areas, reinforcing regional inequalities (Duranton and Turner, 2012; Fretz et al., 2022; Faber,
2014). Infrastructure investments further influence labor market transitions, with improved road networks reducing
monopsony power and increasing worker mobility (Brooks et al., 2021), while rural road expansions in India have
been shown to shift workers from agricultural employment to wage-based jobs (Asher and Novosad, 2020).
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ernment of India launched a set of large-scale road programs, most notably the National Highways
Development Project (NHDP), alongside complementary initiatives targeting freight corridors and
rural connectivity.

The NHDP, launched in 2001, aimed to modernize and expand the national highway system.
Its flagship component was the Golden Quadrilateral Highway (GQH), a 5,846-kilometer net-
work connecting Delhi, Kolkata, Mumbai, and Chennai, as well as major secondary hubs such
as Ahmedabad, Bengaluru, Jaipur, and Surat. Additional NHDP components included the North-
South corridor (Srinagar-Kanyakumari) and the East-West corridor (Silchar-Porbandar). The GQH
was implemented under the National Highways Authority of India (NHAI) and represented one of
the largest highway projects worldwide.

The timing of highway upgrades under the NHDP is central to our empirical design. National
highway expansion accelerated sharply around the completion and opening of the GQH: annual
growth in highway density increased from about 0.5% between 2009 and 2011 to about 12% be-
tween 2011 and 2013, followed by continued expansion during subsequent NHDP phases. Overall,
highway density increased by about 68% between 2011 and 2019.3

During the same period, India also increased connectivity through other road programs, includ-
ing rural roads and economic corridors, contributing to a broad-based expansion of the national
road network.4

2.2 Market Access Measure

We measure changes in connectivity induced by India’s road network expansion using a market
access index, following Donaldson and Hornbeck (2016) and Baum-Snow et al. (2020):

MApt =
∑
c

Nc,2011 × I(Nc,2011 ≥ 100k)

τ θpct
, (1)

where MApt denotes market access for postal code p (pincode in India) in year t, Nc,2011 is the
population of city c in 2011, and I(·) is an indicator equal to one for cities with populations above
100,000 (Tier-1 cities under the Reserve Bank of India classification) in 2011. Bilateral trading
costs between p and c at time t are denoted by τpct, and θ > 0 is the distance elasticity govern-
ing how rapidly market access declines with trading costs. The index captures access to major
economic centers by weighting city populations by bilateral trading costs, so that closer and more

3Appendix Figure A.1 shows the evolution of the road network (Panel (a)) and highway density (Panel (b)) over
1951–2021. Panel (a) indicates that between 2001 and 2011 expansions were concentrated in urban and rural roads,
whereas the length of national highways increased sharply after 2011.

4These include the Pradhan Mantri Gram Sadak Yojana (PMGSY), launched in 2000 to expand rural road con-
nectivity, and the Bharatmala Pariyojana, launched in 2017 to develop economic corridors and feeder routes.
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accessible cities contribute more to local market access.
Trading costs are proxied by travel time along the road network and are modeled as:

τpct = 1 + 0.004 (timepct)
0.8, (2)

where timepct is the shortest travel time (in seconds) between the centroid of postal code p and
city c at time t. Travel times are computed using detailed road network data from OpenStreetMap
(OSM) for the period 2011–2019 and reflect all road types, including national highways, urban
and rural roads, and lower-quality routes.5 We use the Open Source Routing Machine (OSRM)
to compute shortest-path travel times on a static network, ensuring that changes in timepct reflect
infrastructure improvements rather than real-time traffic conditions.6

We set the distance elasticity parameter to θ = 4, which lies within the range commonly
used in gravity-based market access measures (e.g., Donaldson, 2018; Donaldson and Hornbeck,
2016; Redding and Venables, 2004). Holding θ constant, variation in market access over time is
driven entirely by changes in travel times to large cities. Road upgrades that reduce travel times
therefore increase MApt, with larger effects for locations that experience greater improvements in
connectivity.

Using this approach, we compute market access for 19,998 postal codes relative to 300 cities
over the 2011–2019 period. Compared to the binary indicators or simple distance-to-highway
measures commonly used in the infrastructure literature (see, e.g., Chandra and Thompson, 2000;
Michaels, 2008; Atack et al., 2010; Faber, 2014; Datta, 2012; Ghani et al., 2016; Banerjee et al.,
2020), this time-varying, location-specific measure captures both the spatial heterogeneity and the
gradual nature of connectivity improvements generated by India’s road investments.

Figure 1 maps market access across India in 2011 (Panel (a)) and 2019 (Panel (b)). The color
gradient indicates market access levels,MApt, with lighter colors denoting lower access and darker
colors higher access; national highways, including the Golden Quadrilateral, are shown as black
lines, and major cities (Tier-1 centers) are marked by red circles proportional to their 2011 popu-
lation.7 The figure highlights substantial spatial variation in initial market access and pronounced

5OpenStreetMap (OSM), launched in 2004, relies on crowdsourced data and experienced a gradual expansion in
coverage over time. According to Geofabrik, data quality for India prior to 2010 is uneven, particularly for smaller
and less frequently used roads, and becomes substantially more reliable thereafter. For this reason, we restrict the
construction of our market access measure to the post-2010 period. OSM is widely used in scientific research (see,
e.g., Arsanjani et al., 2015).

6See Huber and Rust (2016) for details.
7Market access is computed using shortest-path travel times on the realized road network rather than geographic

distance. Consequently, geographically proximate postal codes may exhibit sharply different market access values
if they differ in their connectivity to national highways or feeder roads. Such discontinuities are particularly visible
in the pre-expansion period around major metropolitan areas (e.g., south of Delhi and east of Mumbai), where river
crossings, topographical constraints, protected land, and regulatory barriers limited road connectivity, forcing indirect
travel routes. Because major cities carry substantial economic weight in the market access measure, small differences
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Figure 1: Market Access

(a) 2011 (b) 2019

Note: Both panels present visual representations of market access, MApt, for 2011 (panel a) and 2019 (panel b).
The color gradient indicates MApt levels, with yellow representing lower access and blue representing higher access.
National highways, including the GQH, are depicted as black lines, while major cities (Tier-1 centers) are marked by
red circles proportional to their population size in 2011.

increases over time, particularly along the GQH and other major highway corridors. These patterns
reflect reductions in travel times induced by large-scale road upgrades under the NHDP and form
the basis of our empirical analysis.8

2.3 Firm-Level Data

Firm- and product-level data come from Prowess dx, a comprehensive panel of Indian firms com-
piled by the Centre for Monitoring Indian Economy (CMIE). The database contains annual and
quarterly financial statements with information on revenues, fixed assets, wage bills, materials,

in travel times translate into large differences in market access.
8Appendix Figure A.2 (viewable with Adobe Reader) presents a spatial animation of market access over time.

Appendix Figure A.3 shows changes in log market access, ∆ lnMApt, over two subperiods. The 2011–2013 period,
coinciding with the completion of the Golden Quadrilateral, features large increases in market access concentrated
along the western GQH corridor connecting major hubs such as Delhi, Mumbai, and Bengaluru. The 2013–2019
period exhibits more geographically diffuse gains, with pronounced increases in central and southwestern regions
along corridors linking Mumbai, Bengaluru, and Hyderabad, reflecting subsequent NHDP investments.
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product mix, prices, and quantities. Crucially for our analysis, Prowess dx provides detailed firm
location data, including postal codes.9

Our analysis spans the period 2009–2019. Market access is measured from 2011 onward, re-
flecting the availability of reliable road network data from OSM, and treatment is defined based
on changes in market access between 2011 and 2019, as described in more detail below. We use
2009–2011 as the pre-treatment window. Prior to 2011, national highway expansion was limited—
highway density increased by only about 0.5% per year between 2001 and 2011—implying min-
imal changes in market access during that period. Restricting the analysis to this window also
ensures that our identifying variation does not overlap with earlier episodes of financial liberaliza-
tion in the 1990s and 2000s, which have been shown to affect firm investment and capital allocation
(Bau and Matray, 2023).

We focus on a panel of 10,190 firms incorporated before 2000, prior to the announcement of the
Golden Quadrilateral project. This restriction mitigates concerns that firm location choices may
have been influenced by anticipated road infrastructure investments.10 Throughout the analysis,
nominal variables are converted to real terms using industry-specific deflators from the INDIA
KLEMS Database (2020). We further restrict attention to road-dependent industries classified
under ISIC Rev. 4 and exclude most service industries.11

Marginal Revenue Products As discussed in more detail below, dispersion in marginal revenue
products reflects heterogeneity in input price wedges and thus provides information on the extent
of resource misallocation. To characterize capital and labor allocation, we compute marginal rev-
enue products following Bau and Matray (2023). We assume a Cobb–Douglas revenue production
function,

Rft = TFPRft

∏
s

yαis
fst , (3)

where firms f operate in industries indexed by i. Rft denotes firm revenue (value of sales) at time
t, yfst is the amount of input s ∈ {k, l,m} used by the firm, where k indexes capital, l labor and
m materials. For notational convenience, we write yfkt = Kft, yflt = Lft, and yfmt = Mft.
We measure capital K using gross fixed assets, labor L using total employee compensation, and
materialsM using intermediate inputs. The coefficients αis are industry-specific output elasticities,

9Prowess dx covers listed and unlisted public companies as well as private firms of varying sizes and ownership
structures, and is widely used in academic research despite not being fully representative of the Indian economy (see,
e.g., De Loecker et al., 2016; Goldberg et al., 2010; Bau and Matray, 2023).

10As Prowess dx does not permit a reliable analysis of firm exit, we do not study the exit margin. Firms may
disappear from the dataset for reasons unrelated to economic shutdown—such as delayed or missing audited financial
statements, changes in CMIE’s coverage, or temporary breaks in reporting. Firms that exit the dataset are typically
small and hold relatively little capital, so their exclusion is unlikely to materially affect our conclusions on capital
misallocation.

11Appendix Table A.1 lists the industries included in the analysis.
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which we estimate in the data and allow to vary across industries, without imposing constant
returns to scale. TFPRft captures firm-specific revenue productivity.

The MRPK is then given by:

MRPKft = αik
Rft

Kft

. (4)

Because αik is constant within industry-year cells, it is absorbed by industry-year fixed effects in
our empirical specifications. Accordingly, we proxyMRPKft by the ratio of firm revenue to gross
fixed assets,

MRPKft =
Rft

Kft

. (5)

Similarly, the marginal revenue product of labor (MRPL) is computed as the ratio of firm revenue
to total labor costs.12

Ex Ante Capital and Labor Productivity To study heterogeneity in firms’ responses to im-
proved market access, we classify firms based on their ex ante marginal revenue products. Firms
are defined as high-MRPK if their average MRPK over the pre-period 2004–2008 exceeds the
median within their 4-digit industry; firms below the median are classified as low-MRPK. Aver-
aging over multiple pre-period years reduces measurement error. We apply the same procedure to
construct indicators for ex ante high- and low-MRPL firms.

Summary statistics of the main variables, covering the period 2011-2019, are presented in Table
A.2 in the appendix.

3 Input Price Wedges and Misallocation

We now clarify how the marginal revenue products measured in Section 2.3 relate to input price
wedges and misallocation, and what components of distortions they capture. In line with the exist-
ing literature, misallocation arises from firm-level variation in input price wedges, which generates
dispersion in marginal revenue products across firms.

The price paid by firm f for input s (capital, labor, or materials) is given by:

pfs = (1 + τ̃fs)ps, (6)

where ps is the undistorted common input price and τ̃fs is a firm-specific wedge, acting as a tax
or subsidy and potentially leading to inefficient input allocation in the Arrow–Debreu–McKenzie
economy.

12Prowess dx does not report employment counts; labor input is therefore measured using total employee compen-
sation.
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The first-order conditions (FOCs) of a cost-minimizing firm f imply:

(1 + τ̃fs)ps = mcf MPfs ∀s, (7)

where mcf is the Lagrange multiplier associated with the cost minimization problem and MPfs

denotes the marginal product of input s. By the envelope theorem, mcf equals the firm’s marginal
cost. If the firm has pricing power, its markup is given by µf = pf/mcf , where pf is the output
price. Substituting into (7) yields:

pfMPfs = (1 + τfs)ps, (8)

where pfMPfs is the value of the marginal product of input s, 1 + τfs = µf (1 + τ̃fs), and τfs
denotes the combined input wedge incorporating both markups and input price distortions (pure
wedges).

If both input and output markets were perfectly competitive, markups would be absent and
all firms would face the same input prices, implying (1 + τfs) = 1 and equalization of marginal
products across firms. Dispersion in pfMPfs therefore reflects the presence of wedges and, hence,
the extent of misallocation.

Hereafter, we define MRPSf ≡ pfMPfs as the marginal revenue product of input s, where
S ∈ {K,L,M} denotes capital, labor, or materials. We acknowledge a slight abuse of terminology
when firms have pricing power, as changes in input use may also affect output prices.

Building on this discussion, the next section studies how firms’ MRPK—which reflects the
combined effects of markups and input price wedges–evolves following improvements in con-
nectivity, and whether firms with initially high MRPK experience larger capital expansions and
sharper subsequent declines inMRPK. Such patterns would imply a compression of the MRPK

distribution and, hence, a reduction in capital misallocation. We then quantify the resulting aggre-
gate productivity gains and disentangle the relative importance of markup adjustments and changes
in pure input wedges.

4 Empirical Approach

To empirically assess these predictions, we estimate empirical specifications in which treatment
is defined at the postal-code level based on changes in market access. We exploit two waves of
connectivity improvements: the completion of the GQH between 2011 and 2013 and subsequent
NHDP phases after 2013. We study the initial wave using a difference-in-differences (DiD) spec-
ification based on changes in market access between 2011 and 2013 and the cumulative effects of
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both waves using a staggered DiD (SDiD) specification over the full 2011-2019 period. Below, we
first discuss empirical challenges, then define treatment, and finally present the specifications and
results.

4.1 Empirical Challenges

Estimating the effects of improved road infrastructure on firm outcomes raises two main empirical
challenges. The first concerns endogenous firm location, as firms—particularly new entrants—
may choose to locate in areas with better access to intermediaries and consumers. To mitigate
this selection concern, we restrict our analysis to firms incorporated prior to the announcement
of the GQH project, i.e., before 2000, and thus operating before the onset of large-scale highway
investments.13 In addition, all specifications include firm FE, which control for time-invariant firm
characteristics, including baseline location.

The second empirical challenge is the potential endogeneity of market access. Road invest-
ments may be correlated with unobserved, time-varying local economic conditions or policies
that also affect firm outcomes. For example, infrastructure improvements may be targeted toward
areas experiencing faster growth, leading to biased estimates if such pre-existing trends are not
adequately controlled for.

To address this concern, we control for initial local economic conditions using nighttime light
intensity at the postal-code level, averaged over the 2004–2008 period and interacted with year
FE.14 We also control for firm age and initial firm size quintile—constructed from average capital
over the 2004–2008 period within 1-digit industries—each interacted with year FE, to account for
differential adjustment paths across firms.

All specifications further include subdistrict-year FE, which absorb time-varying shocks com-
mon to firms located within the same subdistrict, such as local economic conditions and infras-
tructure investments at the subdistrict or district level. We also include 4-digit industry-year FE to
account for industry-specific shocks.

Identification therefore comes from differential changes in market access across firms located
in the same subdistrict over time, holding fixed all time-invariant firm characteristics as well as
common subdistrict- and industry-level shocks. This variation arises because subdistricts typically

13By focusing on firms incorporated before the announcement of the GQH, our analysis abstracts from the effects
of road infrastructure on new firm entry and relocation and therefore captures partial-equilibrium responses of pre-
existing firms.

14Nighttime light data is widely used as a proxy for local economic activity, as regions with higher economic output
typically exhibit greater nighttime illumination (Elvidge et al., 1997; Henderson et al., 2012; Chen and Nordhaus,
2011; Pinkovskiy, 2013; Donaldson and Storeygard, 2016; Jean et al., 2016; Tollefsen et al., 2012; Bickenbach et al.,
2013; Lall et al., 2017; Tripathy et al., 2016). The data are sourced from Google Earth Engine and originate from the
Defense Meteorological Satellite Program’s Operational Line-Scan System.
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contain multiple postal codes, and changes in market access vary substantially across postal codes
within the same subdistrict due to differences in network position and connectivity improvements.

An alternative identification strategy used in the literature exploits planned-route or historical-
route instrumental variables.15 While these IV strategies address concerns related to the non-
random placement of infrastructure, they are typically fixed at a single point in time and therefore
unsuitable in our setting, which exploits time variation in firms’ exposure to road infrastructure.
Moreover, many IV approaches focus on aggregate outcomes at the district or county level and
are not well suited to capturing the granular firm-level capital adjustments that are central to our
analysis.

4.2 Treatment definitions

Treatment in the DiD Our DiD framework defines treatment at the postal-code level based on
growth in market access between 2011 and 2013. Postal codes with above-median ∆ lnMApt over
this period are classified as treated, and firms located in these postal codes are considered exposed
to treatment in all years from 2014 onward.

This definition differs from the standard approach in the literature, which typically assigns
treatment based on proximity to major highways (Chandra and Thompson, 2000; Michaels, 2008;
Atack et al., 2010; Faber, 2014; Datta, 2012; Ghani et al., 2016; Banerjee et al., 2020). As we
illustrate below, firms located at similar distances from the GQH can experience markedly different
changes in market access, indicating that distance alone is an imperfect proxy for actual exposure
to connectivity improvements.

Panel (a) of Figure 2 depicts proximity to the GQH, measured as the shortest distance from
each postal code to the highway, with darker shades of gray indicating closer locations. Panel
(b) maps changes in market access, ∆ lnMApt, between 2011 and 2013, displaying only treated
postal codes with above-median increases; darker shades of blue correspond to larger gains in
market access. In both panels, red lines denote highways, and circles mark major cities, scaled by
their 2011 population.

15For example, Baum-Snow (2007) uses the 1947 plan of the U.S. interstate highway network to study urban
decentralization, while other studies instrument for modern infrastructure using historical transportation networks
such as 19th-century railroads. The inconsequential-units approach (Chandra and Thompson, 2000) instead focuses
on regions incidentally affected by infrastructure placement.
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Figure 2: Treated Postal Codes based on Distance to the GQH and ∆ lnMApt between 2011-2013

(a) Proximity to the GQH (b) Treated postal codes: 2011-2013

Note: Panel (a) depicts proximity to the GQH, measured as the shortest distance from each postal code to the highway,
with darker shades of gray indicating closer locations. Panel (b) maps changes in market access (∆ lnMApt) from
2011 to 2013, displaying only treated postal codes with above-median increases, where deeper blue represents larger
improvements. The color scale divides the upper half of the distribution of market access changes into 15 equally
sized groups (bins), each representing approximately 3.4% of the sample. Lighter shades indicate smaller gains above
the median, while darker shades correspond to the largest improvements. Red lines indicate highways, and red circles
mark major cities, scaled by population size in 2011.

Comparing panels (a) and (b) highlights a key limitation of distance-based treatment defini-
tions: they rely solely on proximity to the highway, regardless of whether connectivity actually im-
proves. This discrepancy is particularly visible along the northeastern and southeastern segments
of the GQH—most notably along the New Delhi–Kolkata and Kolkata–Chennai corridors—where
some postal codes located close to the highway exhibit little change in market access. Conversely,
several areas in Rajasthan and Punjab, which are relatively distant from the GQH and would there-
fore be classified as untreated under a distance-based rule, experience substantial increases in mar-
ket access.

Treatment in the SDiD The DiD specification focuses on changes in market access between
2011 and 2013, corresponding to the completion of the GQH. This window, however, does not
capture the substantial connectivity improvements associated with later NHDP phases. We there-
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Figure 3: Comparison of Treated Postal Codes in the DiD and SDiD

(a) DiD vs SDiD (b) SDiD by year

Note: Figure 3 compares treatment assignments under the DiD and SDiD by mapping treated postal codes across the
two approaches. Red areas are treated only in the DiD, green only in the SDiD, and purple in both. Yellow areas are
untreated. Panel (b) shows treatment timing in the SDiD, with yellow for untreated locations and green for treated
ones; lighter greens indicate earlier treatments. Black lines represent national highways, and black circles mark major
Indian cities, scaled by population size in 2011.

fore complement the DiD analysis with a SDiD approach, which allows postal codes to become
treated at different points in time after 2011, capturing the phased and spatially heterogeneous
rollout of the NHDP.

Under the SDiD design, a postal code becomes treated in the first year after 2011 in which its
cumulative growth in log market access exceeds the median cumulative growth across postal codes
over the 2011–2019 period. Treatment is absorbing thereafter.

Figure 3 compares treatment assignments under the DiD and SDiD by mapping treated postal
codes across the two approaches. Panel (a) shows the geographic distribution of treatment status:
red areas are treated only in the DiD, green areas only in the SDiD, purple areas in both, and yellow
areas remain untreated. Black lines denote national highways, and black circles mark major cities
with populations above 100,000, scaled by their 2011 population. Panel (b) illustrates the timing
of treatment in the SDiD, with lighter green shades indicating earlier treatment and darker shades
later treatment, highlighting the NHDP’s gradual and geographically heterogeneous rollout.
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The figure shows that nearly all postal codes treated in the DiD are also treated in the SDiD,
especially those affected early by the GQH. Panel (b) further indicates that a substantial share of
postal codes classified as controls in the DiD become treated in the SDiD as a result of highway
investments in later NHDP phases. Many of these newly treated areas are located farther from the
GQH. As a result, differences between the DiD and SDiD estimates primarily reflect the impact of
post-2013 infrastructure investments that expand market access beyond the initial GQH corridor.

Balance tests Before turning to the estimation results, we assess whether treated and control
firms differ systematically prior to treatment. Balance tests are conducted in 2010, a common
pre-treatment year for all units. Conditional on industry and subdistrict FE, we find no systematic
differences in pre-treatment outcomes between treated and control firms. Appendix Figure A.4
reports balance tests for additional firm outcomes used in the robustness analysis and similarly
shows no systematic pre-treatment differences between treated and control firms.

Figure 4: Balance checks

(a) DiD (b) SDiD

Note: The figure plots the coefficients (dark blue diamonds) and 95% confidence intervals (light blue bars) from
regressions of firm-level main outcomes—revenues (Rft), capital (Kft), MRPK (MRPKft), labor input (Wft) and
MRPL (MRPLft)—measured in 2010 on a treatment indicator. Regressions are conditional on 4-digit industry FE
and subdistrict FE, with standard errors clustered at the postal-code level. All variables are normalized to have mean
zero and standard deviation one. Panel (a) corresponds to the DiD design, where treatment is defined based on postal
codes that become treated after 2013. Panel (b) corresponds to the SDiD design, where, for balance checks, treatment
equals one for ever-treated postal codes and zero for never-treated ones.
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4.3 Empirical Strategy

We estimate the effects of improved market access on firm outcomes using the following specifi-
cation:

Yft = α + β1Tpt + β2Tpt ×MRPKhigh
f0 +Xγ + df + dit + dct + εft, (9)

where firm f operates in industry i and is located in postal code p in year t ∈ [2009, 2019]. The
dependent variable Yft is the log of either revenues, capital, or MRPK. The treatment indicator
Tpt varies across postal codes and over time and is defined according to the DiD or SDiD design
described in Section 4.2. In the DiD, Tpt equals one for treated postal codes in all years from 2014
onward and zero otherwise. In the SDiD, Tpt equals one from the first year a postal code becomes
treated and remains one thereafter.

The indicator MRPKhigh
f0 equals one for ex ante high-MRPK firms, constructed as described

in Section 2.3. The vector X includes firm age, initial firm size quintile interacted with year FE,
and initial nightlights at the postal code level also interacted with year FE. The term df denotes
a complete set of firm FE, dit industry-year FE (using 4-digit ISIC codes), and dct subdistrict-
year FE. Thus, identification comes from differential changes in market access across postal codes
within the same subdistrict over time, after absorbing firm fixed effects and common industry- and
subdistrict-level shocks. Standard errors are clustered at the postal code-year level, the unit of
measurement for our treatment variable.

Our main coefficients of interest are β1 and β2. Without the interaction term, β1 captures the
average effect of improved connectivity on treated firms. Inclusion of the interaction term allows
us to examine heterogeneity by firms’ initial MRPK levels. In this case, β1 measures the effect on
initially low-MRPK firms, while β1 + β2 captures the effect on initially high-MRPK firms.

If improved connectivity relaxes input frictions and induces capital to reallocate toward firms
with initially high capital wedges, we expect a stronger increase in capital among these firms,
implying β2 > 0 when Yft = lnKft. Under the same mechanism, and holding revenue responses
constant, such reallocation should be associated with a relative decline in MRPK for initially high-
MRPK firms, implying β2 < 0 when Yft = lnMRPKft. Evidence of this pattern would indicate a
narrowing dispersion of capital wedges among firms in treated postal codes and suggest a reduction
in misallocation.
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5 Results

5.1 Capital Adjustments

Table 1 reports the DiD estimates for the completion of the GQH. Panel (a) presents average
treatment effects, while Panel (b) allows for heterogeneity by firms’ initial MRPK.

On average, the GQH had no statistically significant effect on firm revenues (Panel (a), column
1). However, this average masks substantial heterogeneity. Once we allow for differential re-
sponses by initial MRPK, revenues decline significantly for firms with ex ante high MRPK, while
remaining unchanged for initially low-MRPK firms (Panel (b), column 4). As discussed in Section
Appendix F, this decline reflects adjustments in product-level prices, quantities, and product scope
following improved connectivity.

In contrast, capital increases significantly following the GQH, with larger gains among firms
with initially high MRPK. Capital rises by 46% for initially low-MRPK firms, with an additional
19% increase for high-MRPK firms (Panel (b), column 5). We also observe a pronounced decline in
MRPK following treatment, which is substantially larger among firms with initially high MRPK. In
particular, MRPK falls by an additional 42% for initially high-MRPK firms relative to low-MRPK
firms (Panel (b), column 6).

Taken together, these patterns indicate that improved market access is associated with stronger
capital expansion among firms facing higher initial capital wedges, alongside more muted revenue
responses, leading to a compression of MRPK among treated firms. This pattern is consistent with
a reduction in capital misallocation following the completion of the GQH.
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Table 1: DiD Estimates of the Impact of the GQH

(1) (2) (3) (4) (5) (6)
lnRft lnKft lnMRPKft lnRft lnKft lnMRPKft

(a) Average effects (b) Differential effects

Tpt −0.173 0.612∗∗∗ −0.786∗∗∗ 0.007 0.463∗∗∗ −0.465∗∗
(0.249) (0.138) (0.244) (0.246) (0.134) (0.232)

×MRPKhigh
f0 −0.236∗∗∗ 0.193∗∗∗ −0.418∗∗∗

(0.054) (0.031) (0.058)

Controls Yes Yes Yes Yes Yes Yes
N 45300 45300 45300 45300 45300 45300
R2 0.94 0.97 0.86 0.94 0.97 0.86

Note: This table presents the DiD estimates of the average effects (Columns 1-3) and the heterogeneous effects
(Columns 4-6) of the GQH on log firm-level revenues (Rft), capital (Kft), and MRPK (MRPKft). Tpt and
MRPKhigh

f0 indicate treatment and ex ante high MRPK, respectively. Controls include firm FE, industry-year FE,
subdistrict-year FE, firm age, initial firm size interacted with year FE and initial nightlights at the postal code level in-
teracted with year FE. Standard errors clustered at the postal code-year level. Significance: *** p < 0.01, ** p < 0.05,
and * p < 0.10.

Table 2 reports the SDiD estimates for the NHDP, following the same structure as Table 1.
Panel I presents estimates based on two-way fixed effects (TWFE).

Unlike the DiD estimates, the SDiD analysis reveals a positive effect on revenues. Allowing for
heterogeneity, revenues increase by approximately 38% for firms with initially low MRPK (p-value
= 0.06) and by about 13% for firms with initially high MRPK (column 4). Capital also increases
following NHDP investments: firms with ex ante low MRPK increase capital by 25%, with an ad-
ditional 24% increase for firms with ex ante high MRPK (column 5). MRPK remains unchanged
for low-MRPK firms, while declining strongly for firms with high initial MRPK. This pattern indi-
cates that, for low-MRPK firms, capital expansion is largely matched by revenue growth, whereas
for high-MRPK firms capital grows more rapidly relative to revenues. Overall, these findings point
to a reduction in capital misallocation associated with the NHDP.16

In SDiD settings, TWFE estimators may suffer from negative weighting and obscure hetero-
geneous treatment effects (see e.g., de Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon,
2021; Sant’Anna and Zhao, 2020). To assess this concern, we conduct a Bacon decomposition
and find that over 90% of the identifying variation arises from comparisons between treated and

16Appendix Table A.3 reports results on changes in the variance of MRPK across firms. Consistent with a reduction
in capital misallocation, estimated effects are negative in both specifications, although less precisely estimated in the
SDiD design, as is common for second-moment outcomes. In economic terms, the DiD estimate corresponds to a
decline in the variance of log MRPK of roughly 10% relative to its average pre-treatment level in treated areas, with a
comparably sized point estimate in the SDiD specification.
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never-treated units, suggesting limited scope for bias from problematic comparisons. We further
examine the weighting structure following de Chaisemartin and d’Haultfoeuille (2020) and find
that approximately 1.6% of treated group-time cells receive negative weights, accounting for less
than 0.2% of the total weight. Finally, event-study plots show no evidence of differential pre-trends
(Figure A.5) and, as shown in Section 4.2, treated and control firms are balanced on pre-treatment
outcomes conditional on our fixed effects.

To further address concerns related to staggered timing, we also estimate a stacked regression
approach (Baker et al., 2022). This approach constructs cohort-specific samples by stacking never-
treated observations for each treatment cohort and replaces firm FE with cohort-firm fixed effects
while adding cohort-time-to-treatment FE, ensuring that comparisons are made within each cohort
while accounting for differential treatment timing. Results are reported in Panel II and are similar,
though more precisely estimated, than the TWFE estimates in Panel I. Given these results, we
proceed with the TWFE estimator for the remainder of the paper.

Table 2: SDiD Estimates of the Impact of the NHDP

(1) (2) (3) (4) (5) (6)
lnRft lnKft lnMRPKft lnRft lnKft lnMRPKft

I.TWFE (a) Average effects (b) Differential effects

Tpt 0.293 0.330∗∗ −0.027 0.378∗ 0.247∗∗ 0.129
(0.199) (0.137) (0.212) (0.201) (0.126) (0.202)

×MRPKhigh
f0 −0.249∗∗∗ 0.242∗∗∗ −0.457∗∗∗

(0.057) (0.037) (0.060)
N 44806 44806 44806 44806 44806 44806
R2 0.94 0.97 0.86 0.94 0.97 0.86

II. Stacked (a) Average effects (b) Differential effects

Tpt 0.391∗ 0.476∗∗∗ −0.077 0.478∗∗ 0.387∗∗∗ 0.088
(0.217) (0.154) (0.178) (0.227) (0.143) (0.184)

×MRPKhigh
f0 −0.238∗∗∗ 0.246∗∗∗ −0.452∗∗∗

(0.053) (0.035) (0.056)

Controls Yes Yes Yes Yes Yes Yes

Note: This table presents the SDiD estimates of the average effects (Columns 1-3) and the heterogeneous effects
(Columns 4-6) of the NHDP on log firm-level revenues (Rft), capital (Kft), and MRPK (MRPKft). Panel I is
estimated using TWFE, while Panel II is estimated using a stacked regression. Tpt and MRPKhigh

f0 indicate treatment
and ex ante high MRPK, respectively. In Panel I, controls include firm FE, industry-year FE, subdistrict-year FE, firm
age, initial firm size interacted with year FE and initial nightlights at the postal code level interacted with year FE. In
Panel II, we use the same set of controls but replace firm FE with cohort-firm FE and add cohort-time-to-treatment FE.
Number of observations is reported for TWFE but omitted for stacked regressions due to cohort stacking. Standard
errors clustered at the postal code-year level. Significance: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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5.2 Labor Adjustments

While our primary focus is on the reallocation of capital, the associated increase in capital intensity
raises the question of whether firms substitute capital for labor and whether the allocation of labor
also improves. To examine this, we study changes in labor inputs—measured by total employee
compensation—and in the MRPL. Results are reported in Table 3, with Panel I presenting DiD
estimates and Panel II reporting SDiD results.

Panel I shows that labor costs decline significantly during the first phase of the NHDP, with
larger reductions among firms with low ex ante MRPL. This pattern indicates that labor inputs
contract following improved market access, particularly among firms that initially employed rela-
tively unproductive labor. When accounting for later NHDP phases using the SDiD specification
(Panel II), estimated effects on labor costs are close to zero and imprecisely estimated. This sug-
gests that adjustments along the labor margin were largely concentrated in the early phase of the
NHDP.

Despite these differences in timing, MRPL increases in both phases (Column 4). This rise may
reflect changes in product-market markups as well as declines in wage markdowns, possibly due to
reduced labor market frictions and strengthen workers’ outside options associated with improved
connectivity. Additionally, column (4) shows that in both phases, MRPL increases substantially
more so for firms with initially low MRPL, leading to a decline the dispersion in MRPL and hence,
an improvement in the relative allocation of labor.

Taken together, these findings suggest that labor adjusts primarily in the short run, while capital
deepening constitutes the dominant and more persistent response to improved market access.
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Table 3: Labor Input Adjustments

(1) (2) (3) (4)
lnWft lnMRPLft lnWft lnMRPLft

I. DiD: GQH
(a) Average effects (b) Differential effects

Tpt −0.508∗∗∗ 0.318 −0.526∗∗∗ 0.413∗∗
(0.131) (0.195) (0.132) (0.208)

×MRPLhighf0 0.062∗ −0.330∗∗∗
(0.036) (0.047)

N 45300 45300 45300 45300

II. SDiD: NHDP
(a) Average effects (b) Differential effects

Tpt −0.041 0.342∗ −0.066 0.461∗∗
(0.109) (0.174) (0.111) (0.192)

×MRPLhighf0 0.073∗ −0.353∗∗∗
(0.039) (0.043)

N 44806 44806 44806 44806

Controls Yes Yes Yes Yes

Note: This table presents the average effects (Columns 1-2) and the heterogeneous effects (Columns 3-4) of improved
market access on log firm-level labor input (Wft) and MRPL (MRPLft). Panel I shows DiD results and Panel II
SDiD results. Tpt and MRPLhigh

f0 indicate treatment and ex ante high MRPL, respectively. Controls include firm FE,
industry-year FE, subdistrict-year FE, firm age, initial firm size interacted with year FE and initial nightlights at the
postal code level interacted with year FE. Standard errors clustered at the postal code-year level. Significance: ***
p < 0.01, ** p < 0.05, and * p < 0.10.

5.3 Robustness

Our baseline treatments define exposure using the median change in market access. Appendix
Tables A.4 and A.5 explore alternative definitions based on the 40th and 60th percentiles of market
access growth. Across these specifications, results for capital and MRPK remain similar to the
baseline, indicating that our findings are not sensitive to the choice of cutoff.

Existing work suggests that firms’ responses to improvements in market access may be non-
linear, with economically meaningful adjustments often emerging only once connectivity gains
are sufficiently large (Asturias et al., 2019; Donaldson, 2018; Faber, 2014). Motivated by this
evidence, and to mitigate attenuation bias arising from measurement error in continuous market
access indices, our baseline analysis relies on a threshold-based treatment that captures sizable
changes in connectivity. As a robustness check, Appendix Table A.6 replaces the binary treatment
with the continuous log market access measure (lnMApt). Results remain of the same sign and
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overall statistical significance as in the baseline DiD and SDiD estimates when market access is
measured continuously.17

6 Aggregate Effects

This section examines how the firm-level adjustments documented above translate into aggregate
productivity gains. We focus on the aggregate effects of the NHDP as a whole, using the SDiD
estimates.

To this end, we follow Bau and Matray (2023) and quantify changes in the Solow residual
driven by adjustments among treated firms (i.e., firms in treated postal codes). The change in the
Solow residual is given by:

∆SolowR = ∆Net OutputR −∆Net InputR, (10)

where R denotes the set of treated postal codes. ∆Net OutputR captures the change in output of
treated firms, net of the portion reused as inputs within this group. ∆Net InputR represents the
change in net input used by treated firms, excluding the inputs they produce.

In Appendix C, we show that equation (10) can be rewritten, in log-change form, as:

SolowR ≈
∑
i

∑
f∈(i,R)

λfTFPQf︸ ︷︷ ︸
I. Changes in production efficiency

+
∑
i

∑
f∈(i,R)

∑
s

λfαis
τfs

1 + τfs
yfs︸ ︷︷ ︸

II. Changes in inputs

, (11)

where overlined variables x represent log-changes, and s ∈ {k, l,m} indexes capital (k), labor
(l), and materials (m). λf is firm f ’s sales share in the total net output of treated firms, TFPQf

denotes firm-level TFP quantity, αis is the output elasticity of industry i with respect to input s, τfs
denotes the firm-level input wedge, and yfs is firm f ’s usage of input s.

This aggregation formula is similar to those in Bau and Matray (2023), Baqaee and Fahri (2019)
and Petrin and Levinsohn (2012). It highlights that aggregate productivity gains can arise both
from changes in production efficiency (Component I) and from input reallocation when τfs ̸= 0

(Component II). The reallocation term (λfαis
τfs

1+τfs
yfs) is positive when inputs expand at firms with

positive wedges (yfs > 0, τfs > 0) or contract at firms with negative wedges (yfs < 0, τfs < 0).

Implementation To quantify changes in aggregate productivity, we assume no misallocation in
materials (τfm = 0), as in Bau and Matray (2023). The remaining components of the Solow

17Using the continuous measure reduces the sample by three years and leads to additional losses due to singleton
observations. While the implied elasticity of capital with respect to market access is sizable, the average increase in
market access between 2011 and 2019 is approximately 5%, implying an average capital increase of about 10%.
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residual in equation (11) are either directly observed in the data or estimated using the same SDiD
design as in the firm-level analysis, augmented with interaction terms for ex ante high-MRPK and
high-MRPL firms. We use this augmented specification throughout this section.

To estimate TFPQf , we run a TFPQ regression with heterogeneous treatment effects by ex
ante MRPK and MRPL status; Appendix D describes the measurement of TFPQ, and Appendix
Table A.7 reports the results.18 The estimates are statistically insignificant throughout, indicating
that firms adjusted their input mix without experiencing detectable changes in intrinsic production
efficiency. Accordingly, any aggregate productivity gains appear to be driven primarily by re-
duced misallocation rather than improvements in firm-level efficiency. Following Bau and Matray
(2023), we therefore abstract from changes in TFPQ in the aggregate accounting, so that the first
component of equation (11) is set to zero.

The second component in equation (11) captures the effects of changes in input misallocation
for treated firms and requires estimates of αis, yfs, λf and τfs.

As is standard, industry-level output elasticities, αis, are obtained from production function
estimations. Predicted changes in inputs, yfs, are estimated using the augmented SDiD specifica-
tion.19 We then use these estimates to predict changes in inputs for firms that are eventually treated
within the treatment window.20

The sales share λf is computed using data from Prowess dx and the World Input-Output
Database (WIOD). We compute λf for each year between 2004 and 2008 and use the average
over this period.21 Treated firms’ nominal net output is calculated as total nominal output minus
the value of output reused as intermediate inputs within the treated group. We proxy the value of
output that treated firms reuse as intermediate input as follows:∑

i

∑
j

OutputiR · ηji · ηjR, (12)

where OutputiR denotes the aggregate nominal output of treated firms in industry i, ηji is the
share of output from industry i used as an input in industry j (from WIOD), and ηjR is the share of
treated firms in industry j.22

The final inputs required for the second component in equation (11) are the (ex ante) input

18Note that, due to a substantial share of missing firm-product prices, the number of observations is lower than in
the other firm-level regressions.

19Estimates from this specification are reported in columns (2) and (4) of Appendix Table A.8.
20Note that this approach abstracts from general equilibrium spillovers from treated to untreated firms.
21The WIOD provides World Input-Output Tables and underlying data covering 43 countries, along with a model

for the rest of the world, for the period 2000–2014. It includes data for 56 sectors classified according to the Interna-
tional Standard Industrial Classification revision 4 (ISIC Rev. 4) and follows the 2008 System of National Accounts.

22Using the share of treated firms’ sales in industry j to construct ηjR yields nearly identical aggregate productivity
estimates.
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wedges, τfs. Following the conventional approach, we estimate these wedges as:

τfk = αik
piyf
rKf

− 1

τfl = αil
piyf
wLf

− 1, (13)

where output elasticities are estimated as described earlier, firm sales (piyf ), capital and the wage
bill (wLf ) are observed in Prowess dx, and the rental rate of capital is set to r = 0.1, as in Hsieh
and Klenow (2009a).

In the conventional approach, all pre-treatment cross-sectional deviations of expenditure shares
from output elasticities are attributed to misallocation. This may overstate aggregate effects in the
presence of measurement error in expenditure shares. To address this concern, Bau and Matray
(2023) propose a more conservative approach that yields a lower bound on the contribution of each
input to aggregate productivity. This approach is valid under the assumption that the policy—here,
improvements in MA—(weakly) reduced wedges toward zero, with inputs increasing for firms
with ex ante positive wedges and decreasing for firms with ex ante negative wedges. Under this
assumption:

∑
i

∑
f∈(i,R)

∑
s

λfαis
τfs

1 + τfs
yfs ≥ −

∑
i

∑
f∈(i,R)

∑
s

λfαis
∆τfs

1 + ∆τfs
yfs, (14)

and the right-hand side provides a lower bound on the contribution of input reallocation (Compo-
nent II).

Our results suggest that this assumption is likely satisfied for capital but unclear for labor
in the augmented SDiD specification. We therefore apply the conservative approach only when
computing the contribution of capital to aggregate productivity.23

In this case, we estimate changes in capital wedges, ∆τfk, as:

∆̂τfk = e
̂log(1+∆τfk) − 1, (15)

where ̂log(1 + ∆τfk) = β̂1Tpt+ β̂2Tpt×MRPKhigh
f0 + β̂3Tpt×MRPLhighf0 , and the β̂ coefficients

are obtained from the augmented SDiD MRPK regression (Column 3 of Appendix Table A.8).

Results Table 4 reports estimated changes in aggregate productivity, computed using the Solow
residual decomposition in equation (11), for treated firms. Columns (1) and (4) report the capital
contribution, columns (2) and (5) the labor contribution, and columns (3) and (6) the aggregate
effect; columns (4) and (6) use the conservative lower-bound approach.

23Applying the conservative approach to labor yields a lower bound for the labor contribution that is close to zero.
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We find aggregate productivity gains ranging from 2.67% to 5.08%. Capital contributes be-
tween 1.34% and 3.77%, while labor also contributes positively, at around 1.33%.

Interestingly, the aggregate gains under the NHDP are comparable to those estimated by Bau
and Matray (2023) following India’s foreign capital liberalization in 2001 and 2006 under the
conservative approach. While the policy focus (market access vs. deregulation), timing (post-2011
vs. 2001/2006), and source of variation (postal code-year vs. industry-year) differ, the magnitude
of the aggregate productivity effects is remarkably similar.

Table 4: Changes in Aggregate Productivity

Lower-bound (K)
Conventional (K and W ) & Conventional (W )

(1) (2) (3) (4) (5) (6)
Capital Labor Aggregate Effects Capital Labor Aggregate Effects

3.77% 1.33% 5.08% 1.34% 1.33% 2.67%

Note: The table reports estimated aggregate productivity effects of the NHDP for treated firms. Columns (1) and
(4) report the capital contribution, columns (2) and (5) the labor contribution, and columns (3) and (6) the aggregate
effect; columns (4) and (6) use the conservative lower-bound approach.

7 Mechanisms: Markups versus Pure Input Wedges

Even though combined wedges capture changes in misallocation, they are not directly informative
about the mechanism through which these changes operate. By definition, they aggregate the
contributions of pure input wedges and markups (overlined variables denote log changes):

(1 + τfs)︸ ︷︷ ︸
Combined Wedge

= (1 + τ̃fs)︸ ︷︷ ︸
Pure Wedge

+ µf︸︷︷︸
Markup

Accordingly, the substantial variation in the combined input wedges that we capture may originate
from changes in pure input wedges, which reflect improved access to inputs, or from changes
in markups, which reflect increased competitive pressures. This section disentangles these two
channels and separately quantifies the effects of pure input wedges and markups.

Implementation The changes in combined input wedges, (1 + τfs), are estimated from the aug-
mented SDiD specification introduced earlier (columns (3) and (5) of Appendix Table A.8).

To identify markup changes, µf , we build on the framework of Amiti et al. (2019). We impose
two standard assumptions on demand for the final product of the firm f : (1) demand is homoge-
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neous of degree 0 in terms of prices, so that it is not affected if all prices change proportionally;
(2) demand is homogeneous of degree 1 in terms of demand shifters, so that if all firms receive the
same demand shifter, their demand increases proportionally.

Additionally, we rely on two features of our empirical framework. First, consistent with our
earlier findings, we set TFPQft = 0. Second, we assume that treated firms within an industry
are exposed to a common demand shock and that the set of treated firms is representative of firms
within each industry.

These assumptions and results allow us to obtain the following equation for markup changes
(see Appendix E for full derivation details):

µf =
1− ρf
ρf


(

1

αi
− 1

)∑
s

αis

(∑
f

δfyfs − yfs

)
︸ ︷︷ ︸

Scale Effect

+
∑
s

αis
αi

(∑
f

δf (1 + τfs)− (1 + τfs)

)
︸ ︷︷ ︸

Cost Effect

 ,
(16)

where ρf denotes the modified pass-through of marginal costs into prices and δf is the firm’s
revenue share within its industry. Modified pass-through is connected to ρ̃f pass-through estimated
by Amiti et al. (2019) via ρf =

ρ̃f (1−δf )
1−ρ̃f δf

. Lastly, there is a parameter of returns to scale αi =∑
s αis.
Equation (16) highlights two distinct channels of markup changes. The first term captures

adjustments driven by changes in relative production scale within the industry. The second term
captures adjustments driven by changes in relative input wedges. Crucially, only idiosyncratic
changes affect markups; industry-wide shocks do not.

To identify markups from equation (16), we set the pass-through parameter to ρ̃f = 0.6, the
midpoint of the estimates in Amiti et al. (2019), and calculate revenue shares δf directly from the
Prowess dx data. Input shares αis are, as before, taken from the production function estimation.
Input changes yfs and combined wedge changes (1 + τfs) are obtained from the estimates in the
augmented SDiD specification introduced earlier, allowing for heterogeneous effects by initial
MRPK and MRPL (Appendix Table A.8).

Finally, pure wedges (1 + τ̃fst) are derived from the identity: (1 + τfst) = µft + (1 + τ̃fst).

Results Table 5 reports the estimated changes in markups, pure input wedges, and combined
wedges following improvements in market access. The results are averages for the treated firms
and for the groups of treated firms with different initial levels of MRPK and MRPL. Column (1)
shows that markups decline modestly, by about 2.7% on average. In contrast, columns (2) and
(3) show large changes in pure input wedges: the pure capital wedge declines sharply, while the
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pure labor wedge increases substantially. Columns (4) and (5) show that combined wedges closely
mirror the behavior of pure wedges.

Table 5: Changes in markups, pure and combined input wedges

Pure wedges Combined Wedges

(1) (2) (3) (4) (5)
Markup Capital Labor Capital Labor

Total −2.65% −31.9% 28.7% −33.5% 26.7%
High MRPK 0.89% −59.0% 14.5% −58.2% 15.3%
Low MRPK −5.77% −8.0% 41.3% −13.2% 36.1%
High MRPL 1.52% −55.5% 8.9% −53.7% 10.4%
Low MRPL −7.73% −3.1% 52.9% −10.1% 45.5%

Note: The table reports the estimated effects of the NHDP on the markup, pure and combined input wedges. The
results are averages for the treated firms and for the groups of treated firms with different initial levels of MRPK and
MRPL. Column (1) reports the change in markup, columns (2) and (3) report changes of pure capital and labor wedges
respectively, and columns (4) and (5) report changes of combined capital and labor wedges.

These patterns hold across firms with different initial levels of MRPK and MRPL. Even in sub-
samples where markup adjustments are more pronounced, changes in pure input wedges account
for the bulk of the variation in combined wedges. Overall, the reduction in misallocation docu-
mented earlier is overwhelmingly driven by improved access to inputs rather than by increased
competitive pressure in output markets.

This conclusion is consistent with our product-level evidence. As shown in Appendix F, for
the SDiD, we find zero or mildly positive effects for revenues and quantities, and noisy negative
effects on prices. Both these findings are consistent with the effects of declining production costs,
where we would expect to observe an increase in quantities and decline in prices. Product-level
regressions additionally show strong effects on product scope and turnover. Together, these results
suggest that improvements in market access primarily operate by lowering effective input costs
and relaxing firm-level constraints, rather than by intensifying price competition in final goods
markets.

8 Conclusion

This paper shows that improvements in market access driven by highway expansions can substan-
tially reduce input misallocation and raise aggregate productivity. Focusing on connectivity gains
induced by India’s NHDP, we document large reallocations of inputs across firms as transport
frictions decline.

At the firm level, these adjustments are concentrated in capital. Improvements in market access
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lead to significant increases in capital use, with markedly stronger responses among firms that
were ex ante high-MRPK. This pattern is consistent with a reduction in capital misallocation, as
previously constrained firms expand toward more efficient input combinations.

At the aggregate level, we find that the productivity gains associated with the NHDP are siz-
able and comparable in magnitude to the lower-bound effects of foreign capital liberalization docu-
mented in the literature, despite operating through distinct mechanisms. While financial liberaliza-
tion relaxes borrowing constraints directly, improvements in connectivity reduce physical barriers
to production and facilitate the reallocation of inputs across firms. This highlights the complemen-
tary role of infrastructure investment and financial access in improving resource allocation and
boosting aggregate productivity.

Finally, we investigate the mechanisms underlying the reduction in misallocation by decom-
posing changes in wedges into product-market markups and pure input wedges. We find that the
estimated decline in misallocation is driven primarily by changes in pure wedges, highlighting in-
put reallocation—rather than increased product-market competition—as the main channel through
which improved connectivity under the NHDP affects productivity

More broadly, these findings highlight reductions in spatial frictions as an important and com-
plementary margin—alongside financial access—through which misallocation can be reduced and
aggregate productivity increased.
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Appendix A Figures

Figure A.1: Road Network and Highway Density

(a) Road Network
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Figure A.2: Spatial Animation of Market Access, 2011-2019.
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Figure A.3: Changes in (log) Market Access

(a) GQH phase: 2011-2013 (b) Later phases of the NHDP: 2013-2019

Note: Figure A.3 illustrates changes in lnMApt for the periods 2011–2013 (Panel (a)) and 2013–2019 (Panel (b)).
The blue gradient indicates changes in market access. The color scale is held constant across both panels, based on
the full distribution of market access changes from the 2011–2013 period. It is divided into 15 equally sized groups
(bins), each representing approximately 6.7% of the sample over that period. Lighter shades indicate smaller changes,
while darker shades correspond to larger gains. The number of negative log changes in Panel (a) represents less than
0.01% of the observations and is not represented. There are no negative log changes in Panel (b). Red lines represent
highways. Major cities (Tier-1 centers) are shown as red circles, proportional to their 2011 population size.
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Figure A.4: Balance checks

(a) DiD (b) SDiD

Note: The figure plots the coefficients (dark blue diamonds) and 95% confidence intervals (light blue bars) from
regressions of firm-level outcomes measured in 2010 on a treatment indicator. lnTFPRft denotes log TFP revenue,
lnTFPQft denotes log TFP quantity, lnNPft is the log number of products, ∆N+

ft captures the probability of
product addition, and ∆N−

ft captures the probability of product deletion. Regressions are conditional on 4-digit
industry FE and subdistrict FE, with standard errors clustered at the postal-code level. All variables are normalized to
have mean zero and standard deviation one. Panel (a) corresponds to the DiD design, where treatment is defined based
on postal codes that become treated after 2013. Panel (b) corresponds to the SDiD design, where treatment equals one
for ever-treated postal codes and zero for never-treated ones.
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Figure A.5: Event Study Plots

(a) No Interaction (b) With Interaction

(c) No Interaction (d) With Interaction

(e) No Interaction (f) With Interaction

Note: Each panel reports event study estimates from TWFE regressions similar to those in Table 2, examining the
dynamic effects of market access on log firm revenues (Panels (a) and (b)), log firm capital (Panels (c) and (d)), and
log firm MRPK (Panels (e) and (f)). Panels (a), (c), and (e) present estimates without the interaction term, showing
the baseline treatment effect (blue line), while Panels (b), (d), and (f) include an interaction between treatment and
high-MRPK firms (red line). The horizontal axis shows time relative to treatment, with g0 indicating the year of
treatment. The vertical axis displays the estimated treatment effects by event time. Standard errors are clustered at the
postal code-year level. 95% confidence intervals. 6



Appendix B Tables

Table A.1: ISIC Rev.4 1-digit Industries
Included Industries
A Agriculture, forestry, and fishing
B Mining and quarrying
C Manufacturing
D Electricity, gas, steam, air conditioning supply
E Water supply; sewerage and waste management
F Construction
G Wholesale and retail trade; repair of motor vehicles and motorcycles

Excluded Industries
I Accommodation and food service activities
J Information and communication
K Financial and insurance activities
L Real estate activities
M Professional, scientific, and technical activities
N Administrative and support service activities
O Public administration and defence; compulsory social security
P Education
Q Human health and social work activities
R Arts, entertainment and recreation
S Other service activities
T Activities of households as employers; undifferentiated goods- and

services producing activities of households for own use
U Activities of extraterritorial organizations and bodies diversified

Note: This table lists the industries included in our analysis, primarily road-dependent sectors.

Table A.2: Summary Statistics

Variable N Mean SD Min Median Max

lnRft 53983 2.11 2.35 −6.10 2.34 7.25
lnKft 53983 1.27 2.15 −8.77 1.37 5.37
lnWft 53983 −0.65 2.20 −6.59 −0.55 4.84
lnMRPKft 53983 0.85 1.59 −5.40 0.85 5.95
lnMRPLft 53983 2.76 1.31 −2.58 2.69 6.65
lnMApt 41419 3.33 0.29 1.72 3.37 3.68

Note: The table shows summary statistics of the main variables, covering the period 2011-2019, as described in the
main text.
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Table A.3: Variance of Log Firm-level MRPK

(1) (2)
DiD: GQH SDiD: NHDP

Tpt −0.295∗∗ −0.237
(0.130) (0.224)

Controls Yes Yes
N 2792 4113
R2 0.87 0.74

Note: This table reports DiD (Column 1) and SDiD (Column 2) estimates for
the variance of log MRPK across firms. In column (1), the variance is com-
puted at the 4-digit industry × year × treatment-group level. The cell-level vari-
ance is regressed on the treatment indicator (Tpt), controlling for industry-year
and industry-treatment-group FE. In column (2), the variance is computed at the
industry-cohort-year level and regressed on the treatment indicator (Tpt), control-
ling for industry-year and industry-cohort FE. In both specifications, the variance
is adjusted for small-sample bias; observations are weighted by the number of
firms used to compute each cell-level variance, and standard errors are clustered
at the industry level. Significance: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A.4: Alternative Threshold: p40

(1) (2) (3) (4) (5) (6)
lnRft lnKft lnMRPKft lnRft lnKft lnMRPKft

I. DiD: GQH (a) Average effects (b) Differential effects

Tpt −0.172 0.614∗∗∗ −0.787∗∗∗ −0.041 0.460∗∗∗ −0.503∗∗
(0.249) (0.138) (0.244) (0.244) (0.135) (0.229)

×MRPKhigh
f0 −0.178∗∗∗ 0.209∗∗∗ −0.384∗∗∗

(0.036) (0.025) (0.041)
N 45310 45310 45310 45310 45310 45310
R2 0.94 0.97 0.86 0.94 0.97 0.86

(1) (2) (3) (4) (5) (6)

II. SDiD: NHDP (a) Average effects (b) Differential effects

Tpt 0.086 0.043 0.043 0.169 −0.071 0.235
(0.180) (0.148) (0.260) (0.174) (0.149) (0.248)

×MRPKhigh
f0 −0.202∗∗∗ 0.275∗∗∗ −0.467∗∗∗

(0.052) (0.033) (0.055)
N 43777 43777 43777 43777 43777 43777
R2 0.94 0.97 0.86 0.94 0.97 0.87

Controls Yes Yes Yes Yes Yes Yes

Note: This table presents the average effects (Columns 1-3) and the heterogeneous effects (Columns 4-6) of improved
market access on log firm-level revenues (Rft), capital (Kft), and MRPK (MRPKft). Panel I shows DiD results
and Panel II SDiD results. Tpt and MRPKhigh

f0 indicate treatment and ex ante high MRPK, respectively. Relative to
the baseline definition, treatment is defined using the 40th percentile of market access growth. Controls include firm
FE, industry-year FE, subdistrict-year FE, firm age, initial firm size interacted with year FE and initial nightlights at
the postal code level interacted with year FE. Standard errors clustered at the postal code-year level. Significance: ***
p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A.5: Alternative Threshold: p60

(1) (2) (3) (4) (5) (6)
lnRft lnKft lnMRPKft lnRft lnKft lnMRPKft

I. DiD: GQH (a) Average effects (b) Differential effects

Tpt −0.729∗∗∗ −0.053 −0.675∗∗∗ −0.611∗∗∗ −0.164 −0.454∗∗
(0.225) (0.139) (0.235) (0.220) (0.139) (0.226)

×MRPKhigh
f0 −0.238∗∗∗ 0.226∗∗∗ −0.447∗∗∗

(0.058) (0.034) (0.064)
N 45310 45310 45310 45310 45310 45310
R2 0.94 0.97 0.86 0.94 0.97 0.86

II. SDiD: NHDP (a) Average effects (b) Differential effects

Tpt −0.034 0.274∗∗ −0.303 0.027 0.204 −0.180
(0.180) (0.134) (0.193) (0.182) (0.133) (0.192)

×MRPKhigh
f0 −0.130∗ 0.150∗∗ −0.262∗∗∗

(0.078) (0.059) (0.086)
N 44643 44643 44643 44643 44643 44643
R2 0.94 0.97 0.86 0.94 0.97 0.86

Controls Yes Yes Yes Yes Yes Yes

Note: This table presents the average effects (Columns 1-3) and the heterogeneous effects (Columns 4-6) of improved
market access on log firm-level revenues (Rft), capital (Kft), and MRPK (MRPKft). Panel I shows DiD results
and Panel II SDiD results. Tpt and MRPKhigh

f0 indicate treatment and ex ante high MRPK, respectively. Relative to
the baseline definition, treatment is defined using the 60th percentile of market access growth. Controls include firm
FE, industry-year FE, subdistrict-year FE, firm age, initial firm size interacted with year FE and initial nightlights at
the postal code level interacted with year FE. Standard errors clustered at the postal code-year level. Significance: ***
p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A.6: Misallocation of Capital: Continuous Treatment (2011-2019)

(1) (2) (3) (4) (5) (6)
lnRft lnKft lnMRPKft lnRft lnKft lnMRPKft

(a) Average effects (b) Differential effects

lnMApt −0.975 2.723∗∗∗ −3.475∗∗∗ −0.756 2.113∗∗∗ −2.655∗∗
(0.911) (0.813) (1.137) (0.949) (0.814) (1.184)

×MRPKhigh
f0 −0.358 0.997∗∗∗ −1.340∗∗

(0.451) (0.238) (0.522)

Controls Yes Yes Yes Yes Yes Yes
N 34300 34300 34300 34300 34300 34300
R2 0.95 0.98 0.88 0.95 0.98 0.88

Note: This table presents the average effects (Columns 1-3) and the heterogeneous effects (Columns 4-6) of improved
market access on log firm-level revenues (Rft), capital (Kft), and MRPK (MRPKft). Relative to the baseline
definition, treatment is continuous and given by the log market access (lnMApt). MRPKhigh

f0 indicate ex ante high
MRPK. Controls include firm FE, industry-year FE, subdistrict-year FE, firm age, initial firm size interacted with
year FE and initial nightlights at the postal code level interacted with year FE. Standard errors clustered at the postal
code-year level. Significance: *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table A.7: Log Firm-Level Total Factor Productivity Quantity (TFPQ)

(1) (2) (3) (4)
DiD: GQH SDiD: NHDP

Tpt −1.028 −1.005 −1.208 −1.319
(1.382) (1.411) (1.238) (1.266)

×MRPKhigh
f0 −0.022 0.241

(0.313) (0.275)

×MRPLhighf0 −0.004 −0.011

(0.311) (0.295)

Controls Yes Yes Yes Yes
N 20606 20606 20426 20426
R2 0.81 0.81 0.81 0.81

Note: This table reports the average and heterogeneous effects of improved market access
on log firm-level TFPQ. Columns 1-2 show DiD results and Columns 3-4 SDiD results. Tpt,
MRPKhigh

f0 and MRPLhigh
f0 indicate treatment, ex ante high MRPK and ex ante high MPRL,

respectively. Controls include firm FE, industry-year FE, subdistrict-year FE, firm age, initial
firm size interacted with year FE and initial nightlights at the postal code level interacted with
year FE. Standard errors clustered at the postal code-year level. Significance: *** p < 0.01,
** p < 0.05, and * p < 0.10.
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Table A.8: Heterogeneity by Both Firm Ex ante MRPK and Ex ante MRPL

(1) (2) (3) (4) (5) (6) (7)
lnRft lnKft lnMRPKft lnWft lnMRPLft lnEIft lnMIft

I. DiD: GHQ Differential effects

Tp × Pτ 0.008 0.463∗∗∗ −0.464∗ −0.530∗∗∗ 0.514∗∗ −0.375∗ 0.141
(0.253) (0.132) (0.242) (0.134) (0.209) (0.196) (0.341)

×MRPKhigh
f0 −0.156∗∗∗0.145∗∗∗ −0.296∗∗∗ 0.007 −0.154∗∗∗ 0.105∗ −0.109∗

(0.054) (0.031) (0.056) (0.034) (0.044) (0.054) (0.058)

×MRPLhighf0 −0.214∗∗∗0.131∗∗∗ −0.330∗∗∗ 0.060 −0.272∗∗∗ −0.072 −0.049

(0.061) (0.032) (0.058) (0.039) (0.045) (0.056) (0.054)

N 45300 45300 45300 45300 45300 40530 33342
R2 0.94 0.97 0.86 0.97 0.87 0.96 0.94

II. SDiD: NHDP Differential effects

Tp 0.434∗∗ 0.220∗ 0.205 −0.058 0.487∗∗ −0.063 −0.212
(0.211) (0.124) (0.212) (0.109) (0.194) (0.224) (0.256)

×MRPKhigh
f0 −0.170∗∗∗0.202∗∗∗ −0.349∗∗∗ −0.035 −0.112∗∗∗ 0.070 −0.188∗∗

(0.057) (0.035) (0.059) (0.038) (0.041) (0.051) (0.057)

×MRPLhighf0 −0.242∗∗∗0.121∗∗∗ −0.331∗∗∗ 0.084∗∗ −0.316∗∗∗ −0.071 0.028

(0.062) (0.035) (0.058) (0.041) (0.043) (0.056) (0.055)

N 44806 44806 44806 44806 44806 40115 32976
R2 0.94 0.97 0.86 0.97 0.87 0.96 0.94

Controls Yes Yes Yes Yes Yes Yes Yes

Note: This table presents the heterogeneous effects of improved market access on log firm-level revenues (Rft),
capital (Kft), MRPK (MRPKft), labor input (Wft), MRPL (MRPLft), energy inputs (EIft) and material inputs
(MIft). Panel I show DiD results and Panel II SDiD results. Tpt, MRPKhigh

f0 and MRPLhigh
f0 indicate treatment, ex

ante high MRPK and ex ante high MPRL, respectively. Controls include firm FE, industry-year FE, subdistrict-year
FE, firm age, initial firm size interacted with year FE and initial nightlights at the postal code level interacted with year
FE. Standard errors clustered at the postal code-year level. Significance: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A.9: Product Mix & Product-Level Analysis

Firm Product

(1) (2) (3) (4) (5) (6) (7)
lnRft lnNPft Pr(∆N+

ft) Pr(∆N−
ft) lnRιft lnPιft lnQιft

I. DiD: GQH

(a) Average effects

Tpt −0.173 −0.023 −0.743 −0.268 0.356 0.275 0.080
(0.249) (0.185) (0.557) (0.378) (0.380) (0.493) (0.619)

(b) Differential effects by ex ante MRPK

Tpt 0.007 −0.020 −0.888 −0.375 0.455 0.236 0.219
(0.246) (0.186) (0.573) (0.384) (0.404) (0.491) (0.635)

×MRPKhigh
f0 −0.236∗∗∗ −0.003 0.188 0.140 −0.338∗ 0.133 −0.470∗

(0.054) (0.030) (0.133) (0.093) (0.195) (0.215) (0.245)
N 45300 44115 44115 44115 44920 44920 44920

II. SDiD: NHDP

(a) Average effects

Tpt 0.293 −0.012 0.838∗∗ −0.797∗∗ 0.073 −0.450 0.523
(0.199) (0.210) (0.427) (0.325) (0.310) (0.634) (0.554)

(b) Differential effects by ex ante MRPK

Tpt 0.378∗ −0.028 0.738∗ −0.879∗∗∗ 0.182 −0.564 0.746
(0.201) (0.209) (0.437) (0.322) (0.324) (0.639) (0.572)

×MRPKhigh
f0 −0.249∗∗∗ 0.045 0.292∗∗ 0.241∗∗∗ −0.338∗ 0.355∗ −0.692∗∗∗

(0.057) (0.029) (0.147) (0.090) (0.192) (0.186) (0.237)
N 44806 43641 43641 43641 44265 44265 44265

Product × Firm FEs No No No No Yes Yes Yes
Other FEs Yes Yes Yes Yes Yes Yes Yes

Note: This table reports the average effects (Panel (a)) and heterogeneous effects (Panel (b)) of improved market
access on log firm-level revenues (Rft), on the number of products (NPft), and the probability of product addition
(∆N+

ft) and deletion (∆N−
ft). The table also reports effects on log firm-product-level revenues (Rfιt), prices (Pfιt),

and quantities (Qfιt). Panel I shows DiD results and Panel II SDiD results. Tpt and MRPKhigh
f0 indicate treatment

and ex ante high MRPK, respectively. Controls include industry-year FE, subdistrict-year FE, firm age, initial firm
size interacted with year FE and initial nightlights at the postal code level interacted with year FE. Additionally, firm-
level regressions include firm FE, while product-level regressions add firm-product FE. Standard errors clustered at
the postal code-year level. Significance: *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Appendix C Derivation of the Aggregation Formula

Below, we derive the aggregation formula used to quantify how reducing misallocation affects
aggregate productivity among treated firms. We measure this effect through changes in the Solow
residual, ∆SolowR, driven by variations in treated firms (i.e., firms in treated postal codes). Our
derivation follows Bau and Matray (2023), except that we examine misallocation reduction at the
postal code level rather than by industry, as can be seen from Table A.10.

Table A.10: Treated and Untreated Regions, Industries, and Firms

Untreated Region \R Treated Region R

(all untreated postal codes) (all treated postal codes)

Industry 1 . . . , firm f ∈ (1, \R), . . . f ′ ∈ (1, \R), . . . firm f ∈ (1, R), . . . , f ′ ∈ (1, R), . . .
...

...
...

Industry i . . . , firm f ∈ (i, \R) f ′ ∈ (i, \R) firm f ∈ (i, R), . . . , f ′ ∈ (i, R), . . .
...

...
...

Industry I . . . , firm f ∈ (I, \R), . . . f ′ ∈ (I, \R), . . . firm f ∈ (i = I, R), . . . , f ′ ∈ (I, R)

Note: The table illustrates treated and untreated regions, industries, and firms. A firm can sell (buy) its output (inputs)
within the same industry in the untreated region (\R), across industries in the untreated region (\R), or to (from) firms
in any industry in the treated region (R).

Specifically, the change in the Solow residual is given by:

∆SolowR = ∆Net OutputR −∆Net InputR, (A.1)

where R denotes a treated region, encompassing all treated postal codes. ∆Net OutputR cap-
tures the net output change of treated firms, net of the portion reused as inputs within these firms.
∆Net InputR represents the change in net input used by treated firms, excluding the inputs they
produce.

For clarity, but without loss of generality, we derive the Solow residual considering only output
wedges. In particular, we follow Bau and Matray (2023) which treat the input of each firm as being
the output of a fictitious middleman intermediary who buys the input and sells it to the firm with
some output wedge. As discussed by the authors, this can be done because input wedges are a
special case of output wedges; hence, this approach is isomorphic to having an input wedge on the
original firm.
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Change in treated firms’ net output (∆Net OutputR in equation (A.1)) The change in log
total nominal net output in the treated region, valued at fixed prices is:

CR =
∆PCR
PCR

=
1

PCR

∑
i

∑
f∈(i,R)

pf∆cf

=
1

PCR

∑
i

∑
f∈(i,R)

pfcfcf

=
∑
i

∑
f∈(i,R)

pfcf
PCR

cf , (A.2)

where overlined variables x denote log-changes, PCR represents total nominal net output in the
treated region. For firms in these treated regions, net output cf is given by:

cf = yf −
∑
j

∑
f̃∈(j,R)

yf̃ ,f , (A.3)

where yf denotes firm f ’s output, and yf̃ ,f represents the inputs purchased by firm f̃ from firm f

(i.e., the portion of yf used by firm f̃ ).24

Using equation (A.3), we can derive an expression for cf (again, for firms in treated regions):

cf =
∆cf
cf

=
1

cf

∆yf −
∑
j

∑
f̃∈(j,R)

∆yf̃ ,f


=

yf
cf
yf −

∑
j

∑
f̃∈(j,R)

yf̃ ,f
cf

yf̃ ,f (A.4)

Finally, substituting equation (A.4) into (A.2), we obtain the following expression:

CR =
∑
i

∑
f∈(i,R)

λfyf −
∑
i

∑
f∈(i,R)

∑
j

∑
f̃∈(j,R)

pfyf̃ ,f
PCR

yf̃ ,f , (A.5)

24Using equation (A.3), the total nominal net output in the treated region is:

PCR =
∑
i

∑
f∈(i,R)

pfcf =
∑
i

∑
f∈(i,R)

pf

yf −
∑
j

∑
f̃∈(j,R)

yf̃ ,f

 .
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where λf ≡ pfyf
PCR

represents firm f ’s output share in treated firms nominal net output.

Change in treated firms’ net input (∆Net InputR in (A.1)) Meanwhile, the change in the log
treated firms’ net input, valued at fixed prices, is given by:

∑
i

∑
f∈(i,R)

∑
j

∑
f̃∈(j,\R)

∆
(
pf̃yf,f̃

) 1

PCR
=

∑
i

∑
f∈(i,R)

∑
j

∑
f̃∈(j,\R)

pf̃
pfyf

pfyf
PCR

yf,f̃yf,f̃

=
∑
i

∑
f∈(i,R)

λf
∑
j

∑
f̃∈(j,\R)

pf̃yf,f̃
pfyf

yf,f̃ (A.6)

In what follows, we rewrite equation (A.6) to explicitly depend on firms’ markups, µf , and
productivity, TFPQf . To do so, assume the production function of firm f takes the following
form:

yf = TFPQfgf
(
{yf,f̃}f̃

)
,

such that:

yf = TFPQf +
∑
j

∑
f̃

∂ ln gf
∂ ln yf,f̃

yf,f̃ (A.7)

Morevoer, the FOCs of a cost-minimizing firm are:

pf̃ = mcfTFPQf
∂gf
∂yf,f̃

, (A.8)

where mcf is the Lagrange multiplier (the marginal cost) and, again, pf̃ the price of the input
bought from firm f̃ . If the firm has pricing power, the markup is µf =

pf
mcf

and equation (A.8) can
be rearranged as follows:

pf̃yf,f̃
pfyf

=
1

µf
εgf ,yf,f̃

=
1

µf

∂ ln gf
∂ ln yf,f̃

(A.9)

Substituting equation (A.9) into (A.7), we obtain:

yf = TFPQf + µf
∑
j

∑
f̃

pf̃yf,f̃
pfyf

yf,f̃ (A.10)
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Note that the second term of the equation can be decomposed into a summation over treated firms
and another over untreated firms. Rearranging terms, we can rewrite equation (A.10) as follows:

∑
j

∑
f̃∈(j,\R)

pf̃yf,f̃
pfyf

yf,f̃ =
1

µf

(
yf − TFPQf

)
−
∑
j

∑
f̃∈(j,R)

pf̃yf,f̃
pfyf

yf,f̃ (A.11)

Finally, substituting equation (A.11) into (A.6), we obtain an expression for the change in the
log treated firms’ net input, valued at fixed prices:

∑
i

∑
f∈(i,R)

∑
j

∑
f̃∈(j,\R)

∆
(
pf̃yf,f̃

) 1

PCR
=

∑
i

∑
f∈(i,R)

λf

 1

µf

(
yf − TFPQf

)
−
∑
j

∑
f̃∈(j,R)

pf̃yf,f̃
pfyf

yf,f̃


=

∑
i

∑
f∈(i,R)

λf
µf

(
yf − TFPQf

)
−
∑
i

∑
f∈(i,R)

∑
j

∑
f̃∈(j,R)

pf̃yf,f̃
PCR

yf,f̃

(A.12)

Solow residual Combining equations (A.5) and (A.12), we obtain the following expression for
the Solow residual:

SolowR =
∑
i

∑
f∈(i,R)

λfyf −
∑
i

∑
f∈(i,R)

λf
µf

(
yf − TFPQf

)
=

∑
i

∑
f∈(i,R)

λfTFPQf +
∑
i

∑
f∈(i,R)

λf

(
1− 1

µf

)(
yf − TFPQf

)
(A.13)

where the second terms in equations (A.5) and (A.12) cancel out.
Finally, substituting (A.9) and (A.10) into the second component of equation (A.13), and defin-

ing αf,f̃ as the output elasticity with respect to the input purchased from f̃ , equation (A.13) be-
comes:

SolowR =
∑
i

∑
f∈(i,R)

λfTFPQf +
∑
i

∑
f∈(i,R)

∑
j

∑
f̃

λfαf,f̃

(
1− 1

µf

)
yf,f̃

(A.14)

Rewriting the Solow residual as a function of the combined input wedges As in Bau and
Matray (2023), we rewrite equation (A.14) using input wedges instead of output wedges. In the
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presence of input wedges, the FOCs for the cost-minimizing firm become:

pf̃ =
pf

µf (1 + τ̃f,f̃ )
TFPQf

∂gf
∂yf,f̃

=
pf

(1 + τf,f̃ )
TFPQf

∂gf
∂yf,f̃

, (A.15)

where (1 + τ̃f,f̃ ) represents the (pure) input wedge that firm f faces for the good purchased from
f̃ , and (1 + τf,f̃ ) = µf (1 + τ̃f,f̃ ) is the combined input wedge. Thus, incorporating input wedges
implies dividing the marginal product by the combined wedge instead of the output wedge (the
markup).

Consequently, accounting for input wedges, the Solow residual becomes:

SolowR =
∑
i

∑
f∈(i,R)

λfTFPQf +
∑
i

∑
f∈(i,R)

∑
j

∑
f̃

λfαf,f̃

(
1− 1

1 + τf,f̃

)
yf,f̃ ,

=
∑
i

∑
f∈(i,R)

λfTFPQf +
∑
i

∑
f∈(i,R)

∑
j

∑
f̃

λfαf,f̃

(
τf,f̃

1 + τf,f̃

)
yf,f̃ ,

(A.16)

where µf in equation (A.14) has been replaced by the combined wedge.

Solow residual as a function of capital, labor and materials Having rewritten the Solow resid-
ual in terms of input wedges, we now express equation (A.16) as a function of firm-level capital
(k), labor (l), and materials (m) wedges, treating each input-firm combination as a producer. This
yields:

SolowR ≈
∑
i

∑
f∈(i,R)

λfTFPQf +
∑
i

∑
f∈(i,R)

∑
s∈{K,L,M}

λfαis

(
τfs

1 + τfs

)
yfs, (A.17)

where we have assumed output elasticity to be industry-specific, and where yf,s represents firm f ’s
input s. This aggregation formula aligns with those in Bau and Matray (2023), Baqaee and Fahri
(2019), and Petrin and Levinsohn (2012).
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Appendix D TFPQ Estimation

To measure firm productivity—a key input for estimating changes in the Solow residual—we use
quantity-based total factor productivity (TFPQ). While revenue-based total factor productivity
(TFPR) is commonly used in productivity studies, TFPQ is preferable for assessing production
efficiency because it is unaffected by firms’ pricing strategies, thereby isolating productivity from
market power effects. Hence, a higher TFPQ indicates a firm’s ability to produce more output with
the same level of inputs. In our context, where market access is likely to affect firm prices, TFPQ
provides a more reliable measure of productivity effects.

We compute log firm-level TFPQ as follows:

lnTFPQft = lnTFPRft − ln ¯̄pft, (A.18)

where ¯̄pft denotes the sales-share-weighted average price of a firm’s products.25

TFPR estimates are obtained from the residuals of a production function regression in which
firm-level output is regressed on inputs such as labor, capital, and intermediate inputs. A key
challenge in this setting is the presence of unobserved productivity shocks that may be correlated
with input choices. To address this concern, the literature adopts semi-parametric control function
approaches that use input demand functions as proxies for unobserved productivity (Olley and
Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015).

We estimate TFPRft following Levinsohn and Petrin (2003), a method widely used in related
studies (e.g., Goldberg et al., 2010; Topalova and Khandelwal, 2011; Bau and Matray, 2023):

Rft = γ0 + γ1Wft + γ2Kft + INγ + ωft + ϵft, (A.19)

where Wft denotes labor costs, Rft revenues, and Kft gross fixed assets. IN is a vector of inter-
mediary inputs, including expenditures on power, fuel, and raw materials. All variables, including
the unobserved productivity term ωft, are in logs and deflated using the INDIA KLEMS two-digit
industry-level intermediate input price index (ISIC Rev. 4).

TFPR estimates are then derived by subtracting the firm’s predicted output from its actual
output at time t. For estimation, we rely on the elements of IN as proxies for ωft, excluding
industries with fewer than 30 firms. Productivity is estimated by either pooling all data or industry-
by-industry, based on one-digit ISIC rev.4 classifications.

25In Prowess dx, firm-product prices are missing for a substantial number of observations. To address this, when
computing ¯̄pft, we impute missing prices using the median subdistrict-product-unit-year price. If this median price
is unavailable, we progressively aggregate to higher geographical levels in the following order: district-product-unit-
year, state-product-unit-year, and national-product-unit-year. If prices remain missing, we restart the procedure at the
subdistrict-product-year level (omitting the unit dimension) and follow the same sequence of geographical aggregation.
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Appendix E Derivation of Markup Changes

In order to identify markup changes, we start by considering demand for final goods of the firm f :
Yf = D({pf}; {εf}), with {pf} is a vector of prices of all the firms in the market, and {εf} is a
vector of demand shifters. We impose two assumptions: (1) demand D is homogeneous of degree
0 in terms of prices, so that it is not affected if all prices change proportionally; (2) demand D is
homogeneous of degree 1 in terms of demand shifters, so that if all firms receive the same demand
shifter, their demand increases proportionally. In this case, we can note, by Euler homogeneous
function theorem, that

∑
kD

′′
pfpk

pk = 0 and
∑

kD
′′
pf εk

εk = D′
pf

. Let prices be set by the Lerner

formula: pf =
ξf
ξf−1

mcf , with demand elasticity ξf = −
D′

pf
pf

D
. Denote additionally elasticity of

demand elasticity of the firm f to the price of the firm k: ηfk = (ξf )
′
pk
pk
ξf

; and to the demand
shifter of the firm k: ψfk = (ξf )

′
εk
εk
ξf

. Using this definition and properties of the demand function
defined above, note:

∑
k ηfk = 0 and

∑
k ψfk = 0. We consider the log-differences of the prices

(henceforth overlined variables x represent log-changes) and obtain a formula similar to Amiti et
al. (2019):

pf =
ξf − 1

ξf − 1 + ηff
mcf +

∑
k ̸=f

−ηfk
ξf − 1 + ηff

pk +
∑
k

ψfk
ξf − 1 + ηff

εk

Keep following Amiti et al. (2019) and impose an additional assumption that only the following
aggregate of the competitor prices matters for the price changes: p−f =

∑
k ̸=f δkpk
1−δf

, with δf revenue

market share. Denote pass-through of marginal costs into prices as ρ̃f =
ξf−1

ξf−1+ηff
, and effects of

the demand shocks as γ̃fk =
ψfk

ξf−1+ηff
. In this case, the log-changes of prices can be simplified to:

pf = ρ̃f mcf + (1− ρ̃f )p−f +
∑
k

γ̃fkεk

For convenience, define the aggregate industry price as P i =
∑

f δfpf , with i coding the
industry, where the firm f operates. For this case, the log-change in price can be rewritten to
become:

pf = ρf mcf + (1− ρf )P i +
∑
k

γfkεk

where P i =
∑
f

δfpf , ρf =
ρ̃f (1− δf )

1− ρ̃fδf
, and γfk =

γ̃fk(1− δf )

1− ρ̃fδf

Note that coefficients in front of the marginal costs and competitor price aggregate still sum to
one, and

∑
k γfk = 0. This means that a cost-push shock common across firms would increase all

the prices proportionally; and common across firms demand shifter would have no direct effect on

20



prices.
Using the definition of the markup: pf = µf +mcf and the equation above, we can derive:

µf = (1− ρf )

(∑
f δfρf mcf∑

f δfρf
−mcf

)
+ (1− ρf )

∑
f δf

∑
k γfkεk∑

f δfρf
+
∑
k

γfkεk

Note that markup for the individual firm changes due to deviation of the marginal costs from the
weighted average, so that cost shocks that affect all the firms in the industry similarly will have no
effect on it. For instance, in our setting, prices of inputs are common within industries, so their
changes will not affect markups, while changes in input wedges will be consequential, as they are
firm-specific.

The next step is to derive the changes in marginal costs implied by the change in input wedges
and demand. Denote each of the inputs used for production by the firm f as yfs, where s indexes
capital, labor and materials. From the production function defined in equation (6) and standard
cost minimization problem obtain marginal costs:

mcf = Y
1
αi

−1

f TFPQ
−1
αi
f

∏
s

[(1 + τ̃ sft)pis]
αis
αi α

−αis
αi

is

where Yf = TFPQf

∏
s

yαis
fs and αi =

∑
s

αis

Using the equation above, and taking into account that common industry-wide shocks do not
affect markups, and using additionally, the empirical result that there was no TFPQ changes due
to policy, so that TFPQft = 0, we can arrive at the equation connecting wedges and markups:

µf =(1− ρf )

(
1

αi
− 1

)(∑
f δfρfyf∑
f λfρf

− yf

)
+

+(1− ρf )
∑
s

(
αis
αi

)(∑
f δfρf (1 + τ̃fs)∑

f δfρf
− (1 + τ̃fs)

)
+

+(1− ρf )

∑
f δf

∑
k γfkεk∑

f δfρf
+
∑
k

γfkεk

(A.20)

Lastly, we adjust the equation above to implement it in the data. We note that we only observe
combined wedges and substitute in the definition (1 + τfst) = µft(1 + τ̃fst).

The log-changes of the variables are going to come from the SDiD regressions, and, as such,
they represent the changes between treatment and control group. We assume that firms in the
treatment group receive the common demand shock εR, and that treatment group is representative
within the industry. Under these assumptions, we require

∑
k∈(i,R) γfk =

∑
k∈(i,\R) γfk, and recall

the property
∑

k γfk = 0 to obtain:
∑

k∈(i,R) γfkε
R = 0. Therefore, in our setting, direct demand
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shifter effect is zero.
For the estimation we use the pass-through parameter ρ̃ = 0.6 as a mid-point of the estimates

from Amiti et al. (2019). Finally, we implement the following equation in the data:

µf =
1− ρf
ρf

[(
1

αi
− 1

)∑
s

αis

(∑
f

δfyfs − yfs

)
+
∑
s

(
αis
αi

)(∑
f

δf (1 + τfs)− (1 + τfs)

)]
.

Appendix F Product-Market Changes

This section examines how improved market access affects firms’ product mix, focusing on rev-
enues, prices, and quantities at the product level.26 Using product-level data from Prowess dx, we
estimate regressions analogous to the firm-level specifications, replacing firm FE with firm–product
FE. This identification strategy exploits within firm–product variation, particularly in prices and
quantities, while accounting for product entry and exit.27

Results are reported in Table A.9. Column (1) reproduces the firm-level baseline revenue esti-
mates for comparison. Columns (2)–(4) report firm-level regressions for the log number of prod-
ucts, and the probabilities of product addition and deletion, estimated using a linear probability
model. Columns (5)–(7) present firm–product regressions with log revenues, prices, and quantities
as outcomes.

Panel I reports DiD estimates. Panel I(a) shows no statistically significant average effects
across outcomes. Panel I(b), however, reveals heterogeneity by initial MRPK. While product scope
remains largely unchanged for ex ante high-MRPK firms, these firms experience a decline in per-
product quantities, leading to lower product-level and firm-level revenues. This suggests that the
revenue decline observed in column (1) is driven by contractions at the intensive margin rather
than by changes in product scope.

Panel II presents SDiD estimates and points to more pronounced adjustments along the product
dimension. As shown in Panel II(a), columns (3) and (4), firms are 84% more likely to introduce
new products and 80% less likely to discontinue existing ones following NHDP-induced improve-
ments in MA. These patterns are mirrored in Panel II(b) and are consistent with the higher firm-
level revenues observed in column (1). Ex ante high-MRPK firms exhibit a stronger tendency to
add products and a smaller reduction in product deletions relative to other firms. In addition, these
firms experience a modest decline in product prices—statistically significant at the 10% level—
suggesting lower markups, alongside a mild increase in per-product quantities.

26Unit prices are computed as total sales divided by total quantities sold. A limitation of the product-level data is
inconsistency in measurement units across firms and, at times, within firms over time. We address this by standardizing
units across and within firms and excluding firm–product pairs that report changes in unit types.

27Product-level data contain many missing values, resulting in fewer observations for firm–product revenues,
prices, and quantities than for firm-year outcomes.
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